Protecting Water Starts at Home: Local waterways and the Salish Sea

Bob Simmons, Associate Professor, Water Resources

Suquamish S'Klallam Coast Salish Twana/Skokomish Tulalip Suquamish Duwamish Stillaguamish Coast Salish

Duwamish

Squaxin Suquamish Coast Salish

> Puyallup Coast Salish

uamish

native-land.ca

Twana/Skokomish

Ice Ages

The Cordilleran Ice Sheet pushed southward into the Puget Lowland as many as six times over 100,000 years. The retreat of the Vashon Stade started approximately 17,000 years ago.

Glacial till

More Glacial Ti

- Total watershed area, not counting the upper Fraser River area: 42,000 square miles
- Coastline, including islands: 4,642 miles
- Total number of islands: 419
- Number of species listed as threatened, endangered or are candidates for listing: 54

Map of the Salish Sea and Surrounding Basin Stefan Freelan WWU 2009

Who lives in a watershed

- Fish
- Birds
- Reptiles
- Amphibians
- Mammals
- ... the little things that run the world

- Plants
- Moss
- Lichens
- Fungus
- Algae
- ... the little things that really run the world

Slide courtesy of Jeff Adams Washington Sea Grant

Start of the Water Cycle

Forest Canopy

Photo: Bob Simmons

Understory

Photo: Bob Simmons

Photo: Bob Simmons

Herb Layer

Photo: Bob Simmons

Duff Layer

Root Zone and Below

Forest Layers

Graphic: Stacey Gianas

Undeveloped - Forest

- During winter months evaporation continues to be active while the transpiration component is minimal
- Storm events moderated by infiltration, evaporation, and evapotranspiration
- Water is available in substrata to sustain stream base flows during summer months
- As winter progresses, the interflow component of stream flow increases
- During the Summer and Fall streams are maintained primarily by glacial melt water and/or groundwater flow

Smothered salmon redd

Silverdale, WA

Everett, WA

Carkeek Park, Piper's Creek

A.

What is the leading cause of pollution in the Salish Sea?

Stormwater is the leading cause of pollution in the Salish Sea!

Ę

75% of toxics are carried to the Puget Sound by runoff!

Source: Washington Dept. of

Ecology, May 2011, Pub. #11-03-025

Commencement Bay, Tacoma

Photo: WA Dept of Ecology

Montlake Cut, Seattle

The stormwater pollution you see...

Photo by Blake Feist, NOAA Fisheries

Montlake Cut, Seattle

xenoestrogens phenanthrenes

fluorenes

lead polybrominated caffeine diphenyl ethers pyrethroid insecticides nickel antidepressants

cadmium

surfactants

mercury

nanomaterials copper PCBs

zinc

perfluorinated compounds

dibenzothiophenes

phthalates

... and the pollution you don't see

Photo by Blake Feist, NOAA Fisheries

Septic Systems

WASHINGTON STATE UNIVERSITY EXTENSION

Animals, Manure and Pet Waste

Pesticides

Our actions affect each other

Ground water does not respect boundaries

What you do may affect your well or your neighbor's well

&

What your neighbor does may affect your well

&

Groundwater eventually flows to waterways

Possible Surface and Ground Water Contaminants

- Septic Systems
- Fertilizer, Manure, Animals
- Insecticides, Herbicides & Fungicides
- Household Hazardous Products
- Leaking Oil Tanks
- Road Runoff

Septic Systems: For only that which comes out of you!

Animals, Manure and Pet Waste

Keep manure piles & animal enclosures away from well.

Cover manure piles, spread at agronomic rates (Snohomish Conservation District)

Pick up pet waste

Minimize Fertilizer Leaching and Runoff

- Do a soil test and use WSU Recommendations
- Use slow-release or organic fertilizer
- Apply at the correct rates, when the plants are growing and need the nutrients
- Avoid fertilizer and pesticide use close to a well or water bodies

What Chemicals Should I Use

To Kill Bugs To Kill Weeds, Moss To Prevent Fungus To

To Make My Garden Healthy??

Pesticides are Designed to Kill Things

Insecticide Rodenticide Fungicide Herbicide Miticide Homicide

They can also kill things that are not a problem

USGS Stream Study

Puget Sound Basin

USGS Fact Sheet 067-97: Pesticides in Selected Small Streams in the Puget Sound Basin, 1987-1995

Significant Findings

Number and Type of Pesticides Detected

	In water	In bed sediments
Herbicide	17	2
Insecticide	5	4
Fungicide	1	1
Degradation products of DD1	<u>0</u>	2
Total	23	9

The most commonly detected pesticides in streams were among the most heavily used in the basin. The most frequently detected pesticide in streams was 2,4-D, the most heavily used herbicide in the Puget Sound Basin. Other commonly detected and heavily used pesticides were the herbicide dicamba and the insecticide diazinon.

Pesticide concentrations generally were small. None of the detected pesticides in streams exceeded existing State or Federal freshwater aquatic life criteria; however, criteria have been established for only two of the pesticides detected. Diazinon, mevinphos, malathion, and diuron were found in streams exceeding maximum concentrations recommended by the National Academy of Sciences for the protection of aquatic life (National Academy of

👻 🔁 Go

Address 🕘 http://wa.water.usgs.gov/pubs/fs/fs122-96/

Sampling results for 1,326 public supply wells

- Pesticides were detected in 6% of 1,103 randomly selected public supply wells sampled across Washington.
- 21 of 27 analyzed pesticides were detected. Pesticides detected in three or more wells were: atrazine; simazine; dicamba; 2,4,5-TP; 2,4-DB; picloram; metribuzin
- The concentration of pentachlorophenol exceeded the EPA maximum contaminant level (MCL) in one well. Dieldrin and endrin concentrations
 exceeded EPA health advisory levels in one well each. However, EPA drinking water standards have not been established for 11% of the
 pesticides detected by contract labs in this study.
- More than 10% of wells with detections had more than one pesticide detected.

Risk assessment

Factors that correlated with pesticide detection were:

- Land use predominantly agricultural or urban
- Well depth less than 125 feet
- Nitrate concentration greater than 2.7 mg/L (Steve Swope, Pacific Groundwater Group, written commun., 1994)

http://npic.orst.edu/

1-800-858-7378

National Pesticide Information C 1.800.858.7378 npic@ace

You are here: NPIC Home Page -> Pesticide Ingredients -> Active Ingredients -> Active Ingredient Fact Sheets -> 2,4-D General Fact

What is 2,4-D?

2,4-D is an herbicide that kills plants by changing the way certain cells grow. 2,4-D comes in several chemical forms, including salts, esters, and an acid form. The toxicity of 2,4-D depends on its form. The form also affects what will happen to 2,4-D in the environment and what impacts it may have, especially on fish. 2,4-D is used in many products to control weeds, and it is often mixed with other herbicides in these products.

2,4-D was first used in the United States in the 1940s. Agent Orange, an herbicide used during the Vietnam War, contained both 2,4-D and 2,4,5-T. Dioxin, a by-product of 2,4,5-T, led to the ban of Agent Orange.

What are some products that contain 2.4-D?

2,4-D General Fact Sheet

Related

PDF Version Technical Fac

pic.orst.edu/factsheets/24Dgen.html

Has anyone studied non-cancer effects from long-term exposure to 2,4-D?

Animals fed high doses of 2,4-D for several weeks sometimes had fewer young or the young did not have normal skeletons. This only happened if the amount of 2,4-D fed to the mothers was enough to affect the mothers. 2,4-D has not been linked to health problems in human mothers or infants.

Are children more sensitive to 2,4-D than adults?

+

While **children may be especially sensitive to pesticides** compared to adults, there are currently no data to conclude that children have increased sensitivity specifically to 2,4-D.

What happens to 2,4-D in the environment?

2,4-D goes through different changes in the environment depending on its form. Most of the time, 2,4-D breaks down in soil so that half of the original amount is gone in 1-14 days. This breakdown time is called the "half-life" of the pesticide. One form of 2,4-D, the butoxyethyl ester had a much longer half life in aquatic sodim

ester, had a much longer half-life in aquatic sediment of 186 days.

2,4-D is broken down by bacteria in water and in soil. Water alone can also break down 2,4-D. 2,4-D has been found at low levels in shallow groundwater and streams in both rural and urban areas.

Can 2,4-D affect birds, fish, or other wildlife?

How 2,4-D affects animals and plants depends on the form of 2,4-D. Some of the ester forms of 2,4-D can be very toxic to fish and other aquatic life. The salt forms may be only slightly toxic to aquatic animals. Aquatic animals are more sensitive to 2,4-D as water temperature rises. 2,4-D may be moderately toxic to practically non-toxic to birds if they eat it. Eggs sprayed with 2,4-D still hatched and the chicks were normal. 2,4-D is practically non-toxic to honeybees. It is not expected to be a hazard to other beneficial insects.

Q

☆ マ C 3 - npic

https://www.growsmartgrowsafe.org

Leaking Oil Tanks

- In our rainy climate with our acid soils, underground tanks typically begin leaking after about 20 years.
- Best solution is to remove old tanks.
- Monitor fuel level when furnace is off.

Household Hazardous Products

- Read label to choose least hazardous
- Store in secondary containment
- Protect soil from vehicle and home maintenance projects

Snohomish County: Household Hazardous Waste

Lead

Stormwater Contaminants

Nitrates, ammonia, phosphorus

WASHIN

- Fecal coliform, enterococcus, viruses, parasites, pathogens
- Turbidity and sediment
- Heavy Metals
 - Cu, Zn
 - Cd, Ni, Pb, Cr
- Polycyclic aromatic hydrocarbons PAHs
- Tire compounds

Wastewater Contaminants

West Point Wastewater Treatment Plant

- Heavy Metals
- Pharmaceuticals
- Nitrates, ammonia
- Phosphorus

Photo: University of Washington

- Fecal coliform, enterococcus, viruses, parasites, pathogens
- Microfibers and associated bacteria
- Synthetic organic compounds used in food production, personal care products, plastics manufacturing, and other industrial processes such as flame retardants, dioxins, and steroid hormones

Pharmaceuticals discharged from wastewater treatment plants

Fig. 3. Risk quotient for 14 PPCPs in wastewater effluent and in Lake Michigan (RQ>1 is high risk, RQ from 0.1 to 1 is medium risk, and RQ<0.1 is low risk).

Blair, et. al., 2013

2019 STATE OF THE SOUND

Nathalle Flamel (and colleagues) Vital Signs Reporting Lead, Puget Sound Parmership November 20, 2019

"On the surface, Puget Sound looks beautiful, but it's in grave trouble"

-Laura Blackmore, Executive Director, Puget Sound Partnership

Bloom

Red-brown bloom and organic surface debris flowing north with outgoing tide. Location: Eld Inlet (South Sound), 12:47 PM

How we keep track of recovery

Vital Sign Assessment

2020 targets

targets

indicators do not have targets but are reported in this table for progress relative to a baseline reference

Healthy Water Quality Vital Signs

GOAL > VITAL SIGN > INDICATOR	PROGRESS	STATUS
- Healthy Water Quality		
- Freshwater Quality		
Freshwater impairments	OR NO DATA	BELOW 2020 TARGET
Benthic Index of Biotic Integrity	MIXED RESULTS	BELOW 2020 TARGET
Water Quality Index	NOT	BELOW 2020 TARGET
 Marine Sediment Quality 		
Chemicals exceeding Sediment Quality Standards	GETTING BETTER	BELOW 2020 TARGET
Sediment Quality Triad Index	MIXED RESULTS	BELOW 2020 TARGET
Sediment Chemistry Index	NOT	NEAR OR AT 2020 TARGET
+ Marine Water Quality		
+ Toxics in Fish		

Healthy Water Quality Vital Signs

GOAL > VITAL SIGN > INDICATOR	PROGRESS	STATUS
- Healthy Water Quality		
➡ Freshwater Quality		
← Marine Sediment Quality		
 Marine Water Quality 		
Marine Water Condition Index	GETTING WORSE	NO 2020 TARGET
Dissolved oxygen in marine waters	UNSUFFICIENT OR NO DATA	BELOW 2020 TARGET
 Toxics in Fish 		
Contaminants in adult Chinook salmon	UNSUFFICIENT OR NO DATA	BELOW 2020 TARGET
Contaminants in English sole	MIXED RESULTS	BELOW 2020 TARGET
Contaminants in juvenile Chinook salmon	UNSUFFICIENT OR NO DATA	BELOW 2020 TARGET
Contaminants in Pacific herring	MIXED RESULTS	BELOW 2020 TARGET

CHINOOK SALMON POPULATION ABUNDANCE There is little sign of recovery of Puget Sound Chinook populations

CHINOOK SALMON POPULATION ABUNDANCE

Chinook Salmon Natural-Origin Spawner Abundance

The +* and -* symbols indicate that the population statistically significantly increased or declined, respectively, over the time period.

BIOMASS OF SPAWNING PACIFIC HERRING Two of the three stocks have declined since 2010

PROGRESS:	STATUS:	
GETTING WORSE	BELOW 2020 TARGET	

Puget Sound Partnership, 2019

BIOMASS OF SPAWNING PACIFIC HERRING

Washington State Department of Fish and Wildlife, Marine Fish Unit (Forage Fish)

2019 STATE OF THE SOUND

www.stateofthesound.wa.gov

Puget Sound Partnership, 2019

Forest Layers

Graphic: Stacey Gianas

Mycorrhizal short roots of pine seedlings [Jim Deacon]

Bob Simmons simmons@wsu.edu

hs

and a

8

C Worldprints.com

Thank You

Bob Simmons WSU Extension simmons@wsu.edu 360.379.5610 x207